MEHHIMADEDEKT

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЭДАНИЙ И СООРУЖЕНИЙ ДЛЯ КАПИТАЛЬНОГО РЕМОНТА В ЛЕНИНГРАДЕ

СЕРИЯ 1.149-KP-1

C60PHO-MOHOMUTHЫЕ ПЕРЕКРЫТИЯ

/ с сохранением существующих металлических балок /

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУНЕНИЙ ДЛЯ КАПИТАЛЬНОГО РЕМОНТА В ЛЕНИНГРАДЕ

СЕРИЯ 1.149-KP-1

C60PHO-MOHOMUTHLIE MEPEKPLITUS

/с сохранением существующих металлических балок /

и.о. Глявного инженеря институтя глявный конструктор института Зам. Начальника технического отдела глявный специалист отдела

С.А.106КОВ 1.В.СДОБНИКОВ

E.W.MOCKANEBA 6.M.BUHEP

					2
	Обозначение	Наименование	Стр.	//pume	-
	1.149-KP-1.1.000	Содержание	2		
	1.149-KP-1.1.001	Пояснительная записка	3,4		
	1.149 - KP-1.1.002	Монтаненые скемы	5,6,7		
	1.149 - KP-1.1.003	Paspes 1-1	8		
	1.149 - KP-1.1.004	Pospes 2.2	9		
	1.149-KP-1.1.005	Маблица раскладки сборных плит.	10		
	1.149-KP-1.1.006	Номенклатура железобетонных	× //		
	1.149-KP-1.1.007	Армирование мит. ЛУ-10.4.3; ЛУ-10.5.3; ЛУ-10.6.3.	12		
	1.149 - KP-1.1.008	Армирование плит ПУ-10.4.3,5; ПУ-10.5.3,5; ПУ-10.6.3,5.	13		
	1.149-KP-1.1.009	Cemeu C-1-1, C-1-2, C-1-3, Cemeu C-1-4, C-1-5, C-1-6.	14		
	1.149-KP-1.1.010	Армирование плит ПУ-6.4.3; ПУ-6.5.3.; ПУ-6.6.3.	15		
	1.149-KP-1.1.011	Армирование плит ПУ-6.4.3,5; ПУ-6.5.3,5; ПУ-6.8.3,5.	16		
	1.149 - KP-1.1.012	C-2-1, C-2-2, C-2-3, Cemeu C-2-4, C-2-5, C-2-6	17		
	1.149 - KP-1.1013	Номенклатира балок	18		
	1.149 -KP-1.1.014	Мономитные балки 5M39-5M63 5M929-5M963	19		
	1.149-KP-1.1.015	K-1-1, K-1-2, K-1-3 KOPKOCOI K-1-4, K-1-5, K-1-6	20-24		
	1.149 - KP-1.1.016	Монолитные балки БМ 65-БМ15 БМУ65-БМУ15	25		
99	1.149-KP-1.1.017	K-2-1, K-2-2, K-2-3 Kapkacai K-2-4, K-2-5, K-2-6	26,27		
B3OM. UHB.N.	1.149 - KP-1.1.018	Узлы крепления перевоворок			
6 6	1.149 - KP - 1.1.019	Пример устройетва сборно- -монолитного перекрытия	29		
701					
2 8					_
13.01.812 (B)		1.149-KP-1.1.	000)	
	TA. CHEU BUNCO XO	Cma	AUR A	uem Auem	06
33	Thosep Anmonord	Содержание	ekmy)	งบั มหะสนสเ	9,72
18	Henos Wurasola War	<u> </u>		нечапроект	•

Альбом "Сборно-монолитные перекрытия (с сохранением сиществиющих метоллических болок) серия 1.149-КР-1.1. разработан согласно плану наччно-исследовательских и опытно-конструкторских работ на 1980 г. исполкома Ленгорсовета (решение исполкома Ленгорсовета N 752 от 3 дека-

В Ленинграде имеется большое количество домов, перекрытия которых выполнены из металлических балок с дере-Вянным заполнением,

При капитальном ремонте зданий ввиду недостоточной несящей способности перекрытий, а также из-за требований пожарной безопасности, токие перскрытия подлежат розборке.

Разработанная в настоящем альбоме конструкция пере-PPSIMUS TOPASCHAMPURAEM COXPOHENCE CYLLECMESHOLLUX MEMAANUYECких билок и четройство дополнительных монолитных билок, ополубкой которым служеные сборные уголковые плиты типа ПУ. Плиты челадываются на подмости, которые слижат опалибкой для бетонирования монолитной балки. Аля соединения плит с монолитной болкой применяются стержени Ф 10 АТ, которые пропискаются в отверстия противолежащих плит до бетонирования

С целью инлистриализации четройства перегрытия лолнена применяться переносная опалубка с инвентарными выдвижеными метамическими стойками. Подачу бетона на перекрытия следует выполнять бетононасосом.

Предлагаемая конструкция перекрытия по сравнению с применяетыми в настоящее время сборными иселезобетонными настилати имеет ряд преимуществ;

- работы могут вестись без применения бетонного крана. - сохранение несущих стен, отказ от четройства бороза, ослабляющих стены.

- устройство новых перекрытий без полного демонтажей перекрытий по всему колодчу, что обеспечивает сохранение жёсткости конструкций здания на период ремонта.
- возможность устройство перекрытия на любом этаже знания без разборки вышележащих перекрытий.

в настоящем альбоме разработаны конструкции перекрытий с использованием существующих металлических балок с шагом от 1,0 м до 1,4 м при пролётах в свету до 7,0 м.

Основная ногрузса (нагрузса от пола, временная и от межкомнатных перегородок) воспринилоется монолитными эселезобетонными балками. Монолитные железобетонные балси прелустотрены лвуж типов: БМ на расчётную нагрузку g=800 Flom u BMY-Ha q=1000 Flom (c 44 Emon Beca mexicommamus nepeгородок, распологаемых на ниж). Балки разработаны длиной $\ell, 9 + 7, 5 m$ с градацией через 0,2 m.

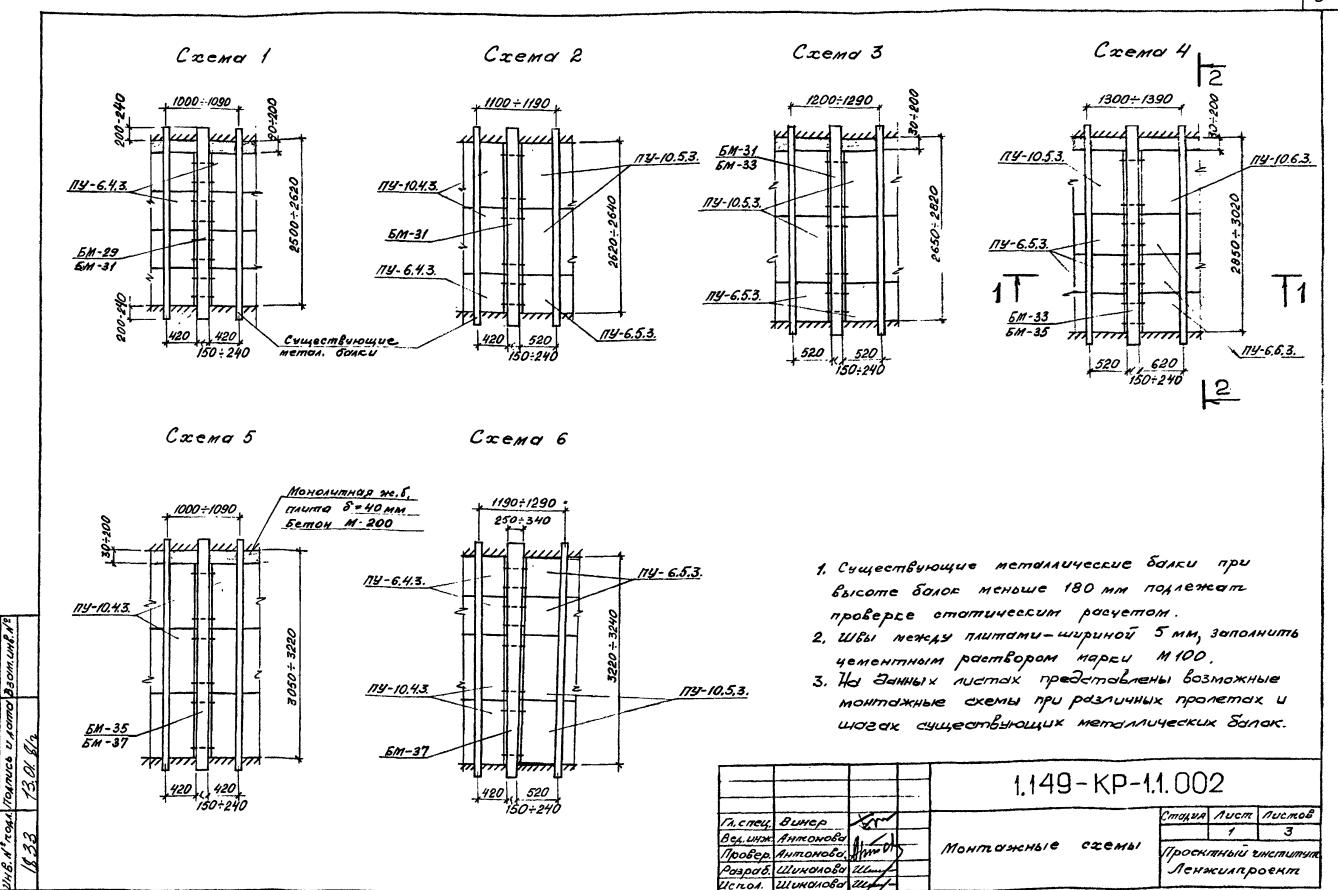
Высота балос принята 300 мм при лаине их до 6,3 м и 350 мм при длине их $6,5 \div 7,5$ м . Ширины болок принапы при ллине до 6,9 m - 150 ; 240 mm и 250 ; 340 mm ANA SUNOK ANUHOU 7,1+7,5 m

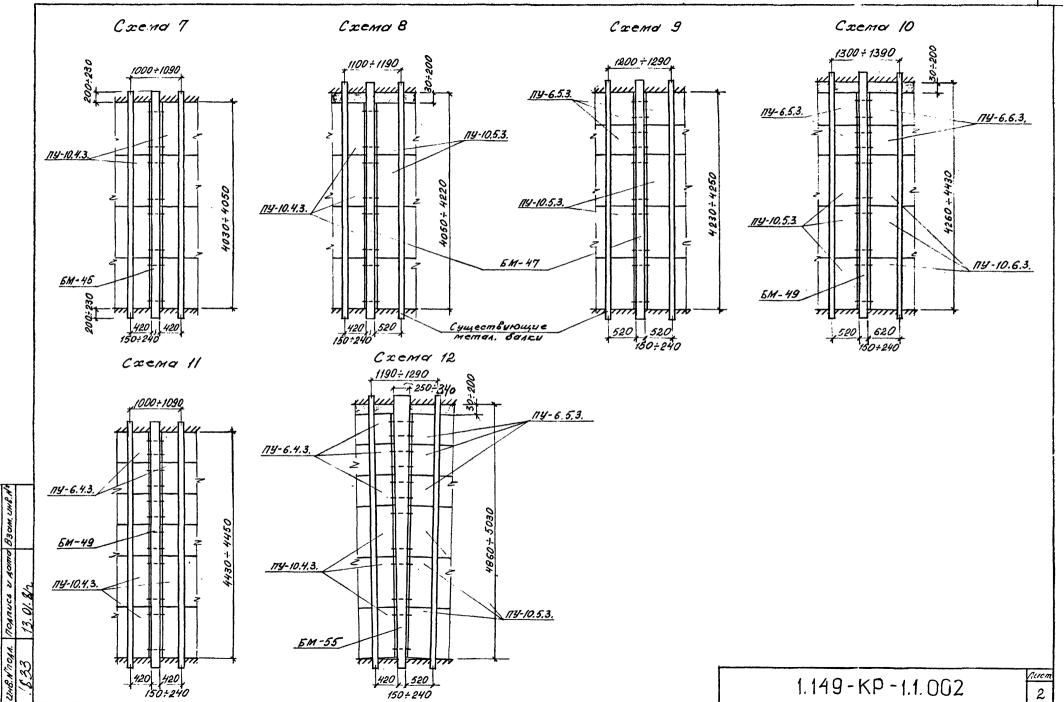
Монолитные железобетонные болки рассчитаны при массимальном шаге 1400 мм.

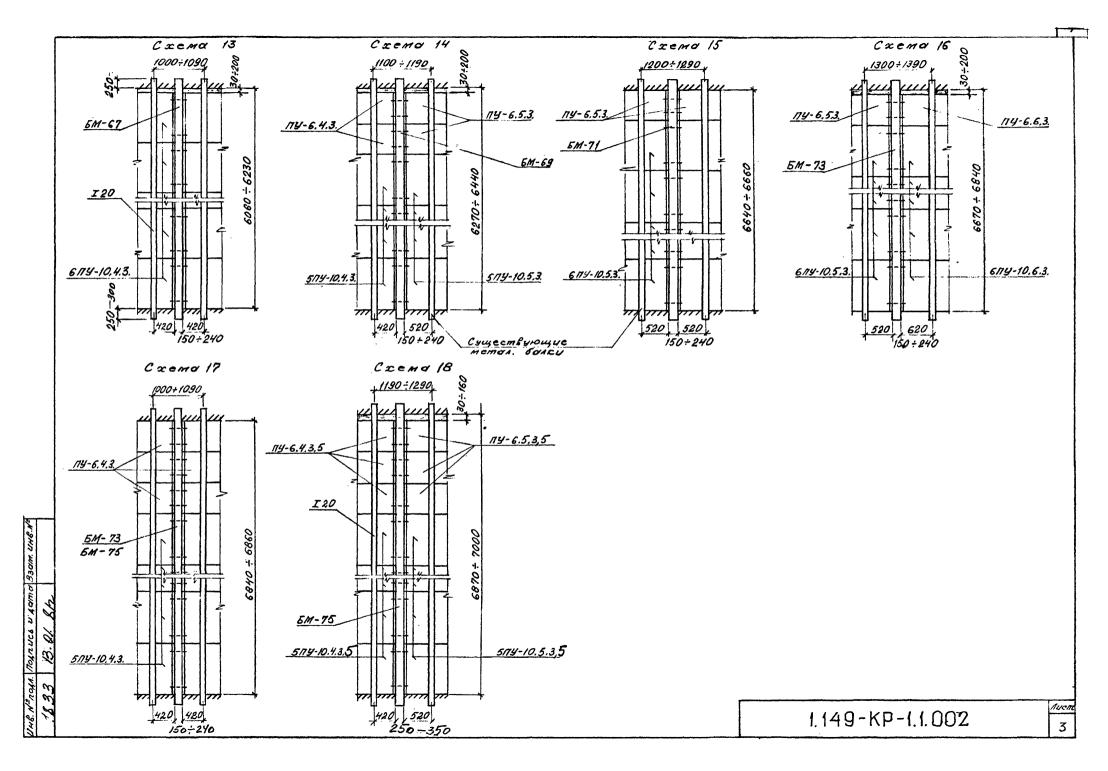
Pacyem mpousecaen & coomfemement c CHNT II - 21 - 75, армирование производител каркасами с рабочей apmamupou enacea AT FOCT 5781 - 75.

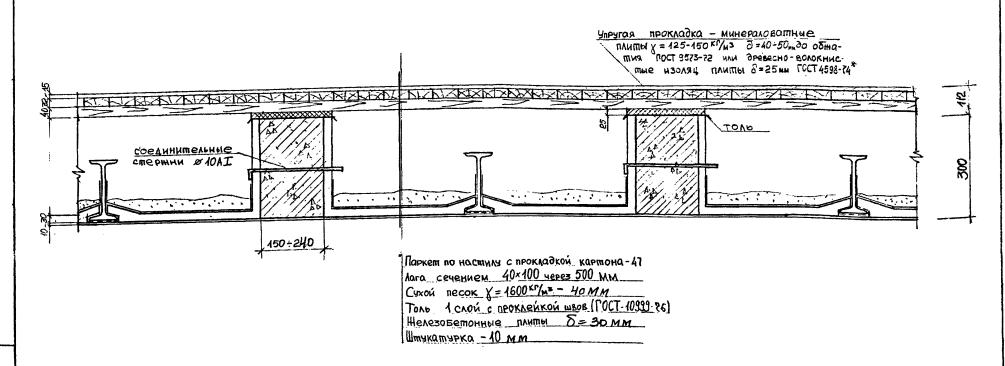
Метиллические баки I 18 (по старым сортаментам) проверены на нагрузку 9°= 230 к/лм при шаге 1,4 с когффициентом человия работы 0.8 с

`				1.149 - KP-	1.1.0	01	
Гл. спец.		Xm			Correll.	Auem	Aucmos
Вед. Инж	Антонова	0. 1.04	7	MOACHUMEA6HOA		1	2
Провер	AHMOHOBO	MALLA	7		7		
	WUKOMOBO			BORUCKO	Проентный институт		
Uenon.	MUNDAOBO	Went-			1ch	קמגעאני	DEKIL

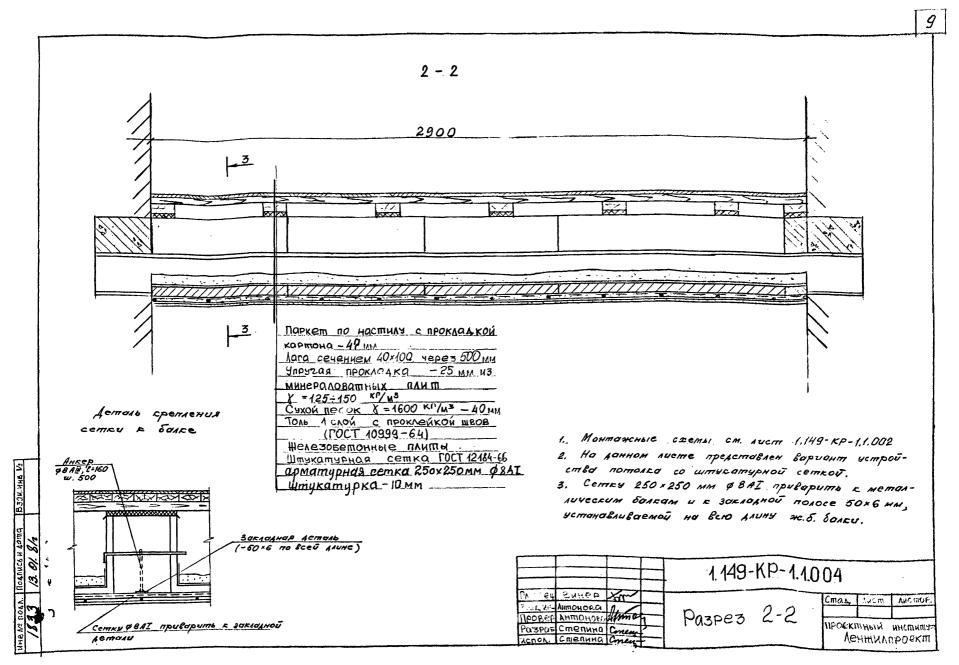

Сборные эселезобетонные плиты разработаны длиной 600 и 1000 мм, шириной 420,520,620 мм при высотах 300 и 350 мм.


Плиты рассчитаны на нагрязкя $q^p = 300 \, \text{кг/м}^2$ Арматяра принята конструктивно из холоднотяну-той проволоки класса ВТ ГОСТ 6727-53 , Сетки изготавливаются в соответствии с СН 393-69.


При изготовлении сборных железобетонных элементов необходимо выполнять требования ГОСТ 18015 - 75
и изделия железобетонные и бетонные. Общие технические требования ".


ANUCE U AOMO BSOM, UNS

1833 13



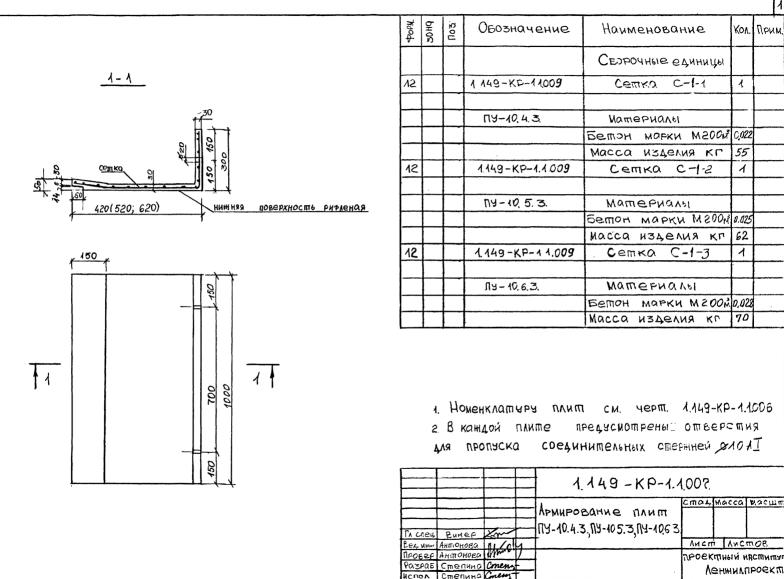
- 1. Монтомсные стемы см. лист 1.149- ЕР-1.1.002.
- 2. На данном листе представлен варионт штукатурного потолка без сетки.

			 1.149 -	-KP - 1.	1.003		
PA. CREW	<u>Винер.</u> Антонова Антонова	Acres of	Pazrez	1-1	Стадия	lucm	ANCHIOE
Pazras	^	Conene-			npoekm Ne	-	BOGKW HCUINWAW

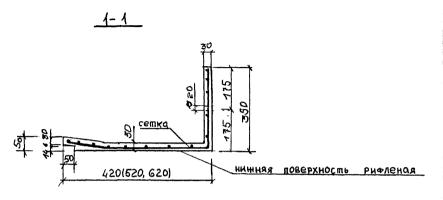
сь и дота взам. инв. И

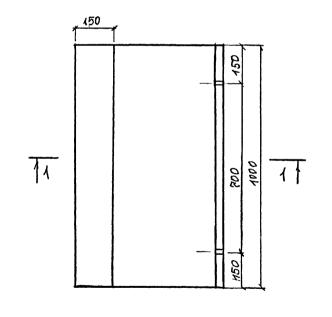
-3.01.8/2

,	Пролет в свету в (т)	1710M0 C = 1000 mm	171UMO C = 600 MM	Ширина монолит. Участка (мм)
	1	2	3	4
	2500 2620		4	80 - 200
	2620 - 2640	2		
	2650 - 2820	2	/	30 - 200
	2820 - 2840	1	3	_
	2850 - 3020	1	3	30 - 200
	3020 - 3040	3	_	_
	3050 - 3220	3	_	30 - 200
	3220 - 3240	2	2	
	3250 - 3420	2	2	30 - 200
	3430 - 3450	1	4	-
	3460 - 3630	1	4	30 - 200
	3630 · 3650	3	1	_
	3650 - 3820	3	/	. 30 - 200
	3830 - 3850	2	3	_
	3860 - 4030	2	3	30 - 200
	4030 - 4050	4	_	
	4050 - 4220	4	-	30 - 200
	4230 - 4250	3	2	
	4260 - 4430	3	2	30 - 200
	4430 - 4450	2	4	_
	4460 - 4630	2	4	30 - 200
2	4630 - 4650	4	1	
6/2	4660 - 4830	4 .	1	30 - 200
	4830 - 4850	3	3	
100	1 4960 - 6030	3	3	30 - 200
	5030 - 5050	5		-
33		5		30 - 200
10		4	2	


1	2	3	4
5260 - 5430	4	2	30 - 200
5440 - 5460	3	4	
5470 - 5640	3	4	30 - 200
5640 - 5660	5		
5660 - 5830	5	1	30 - 200
5840 - 5860	4	3	
5870 - 6040	4	3	30 - 200
6040 - 6060	6	-	_
6060 - 6230	6		30 - 200
6240 - 6260	5	2	
6270 - 6440	5	2	30 - 200
6440 - 6460	4	4	
6470 - 6640	4	4	30 - 200
6640 - 6660	6	//	_
6670 - 6840	6	1	30 - 200
6840 - 6860	5	3	_
6870 - 7000	5	3	30 - 160

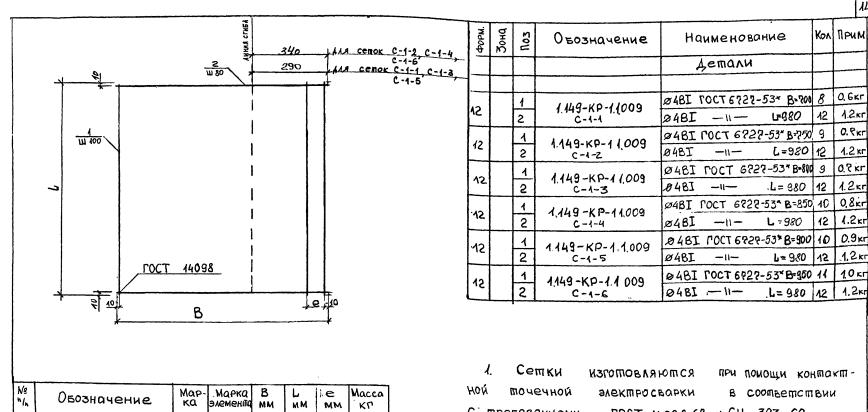
				1.149 - KP -	1100)5	
	Винер			_ ~	CMOLUA	Nucm	Листов
Вед. инж	AHMONOEd	11.0	<i>l</i> ,	Ταδλυμα ραςκλαμκυ			
Провер.	ANMONOBO	MAN	/	copHoix MAUM	וש שומאו	HEMUMUM	
Розроб.	MUNDAOEd	Wend-			KUANDO		
Ucnos.	MUNDAOSO	Munf			1 "	Control	CANC


	Mapra	Pas	меры,	MM	OSBEM	Mac	ed, Kr	Cosepu	NN
9 c k u 3	USACAUA				1		Opmamapsi	6 M 3	AUCTOS
		1	8	h	M3	ET	BI	SEMONO	
	114-10,4.3.	1000	420	300	0.022	55	1.8	82_	11.007
	174 - 6, 4.3.	600	420	300	0.013	32	1,1	84	-1.1.010
	114-10.4.3,5.	1000	420	350	0,023	58	1.9	82_	-11.008
	174- 6.4.3,5.	600	420	350	0.014	35	1,2	86	-11.011
	114-10.5.3.	1000	520	300	0.025	62	1.9	76	1.1.007
	114-6,5.3.	600	520	300	0.015	37	1,2	80	-1.1.010
30/	174-10.5,3,5	1000	520	350	0,026	65	2,0	77_	-1.1.008
///////////////////////////////////////	174-6.5.3,5	600	520	350	0.016	40	1,3	8/	-1.1.011
	174-10.6.3	1000	620	300	0.028	70	2,1	75	1.1007
	114-6.8.3.	600	620	300	0.0166	42	1.4	84	-1.1.010
	AY-10.6.3,5.	1000	620	350	0.029	73	2.2	76	-1.1.008
	174- 6.6.3,5.	600	620	350	0.0174	43	1.5	86	11.011


1. Нижная повержность плит рифаёная.

//ровер.	Антоново Щиналова	μ_{i}	HECACSOSEMONHESE MAUM	Проектный инститит Ленжилпроект		
TA, eney.	Винер .	Zm-	Ηο менκλαπυρα	Стоция	Nucm	Aucmo8
			 1.149-KP-	1.1.00	06	

В № подл. ПОДПИСЬ ИДОПА ВЗОМ ИНВ 16



						'	_
POPIL	Зон а	1103.	Обозначение	Наименование	Kon	Прии	I
				СБОРОЧНЫЕ ВДИНИЦИ			
12			1149-KP-1.1.009	Сетка С-1-4	1		
			NY-10, 4. 3,5	Материалы			-
				Бетон марки M200 из	0.023		
	l			часса изделия кг	58		١
12			1.149 - KP-1.1.009	Cemka C-1-5	1		
			ΠY-10, S. 3, S	Материалы:			-
				BEMOH MAPKH MZOOM	0,026		1
				MACCA NZAENNA KT	65		1
12			1.149 - KP-1.1009	Cemka C-1-6	1]
	L		174-10, 6, 3,5,	Материалы			
				Бетон марки 14200 м3	0,029		1
				Насса изделия кг	73		

- 1. Номенкламуру плим см. черт. 1.149~KP-1.1.006
- 2. В кандой плите предусмотрены отверстия для пропуска соединительных стериней \$ 10 Å I.

			1 149- KP-1,	4.000	s S	
			АРМИРОВОНИЕ ПЛИТ		массо	Масшп
	Антонора		NY-10.4.35, NY-10.5.3,5; NY-10.6.35		cmoB	
Разраб	Антонова Степина Степина	Conces-				Ьо <i>∈;∵Ш</i> інсш≀шлш

ı			
ı			
ļ			
ì			
Ì			
į			
ı			
ı			
ı			
1			
1			
1			
1			
1			
1			
1			

1

2

3

4

5

1.149-KP-1.1

1.149-KP-1.1

1.149 - KP-1.1

1.149 -KP-1.1

1.149 - KP-1.1

1.149 - KP-1.1

C-1-1114-1043

C-1-2 114-10435 750

C-1-3 NY-40.5.3 800

C-14 NY-10535 850

C-1-5 114-10.63 900

C-16 NY-10.635 950

700

980

980

980

980

980

980

1.80

30

180

30

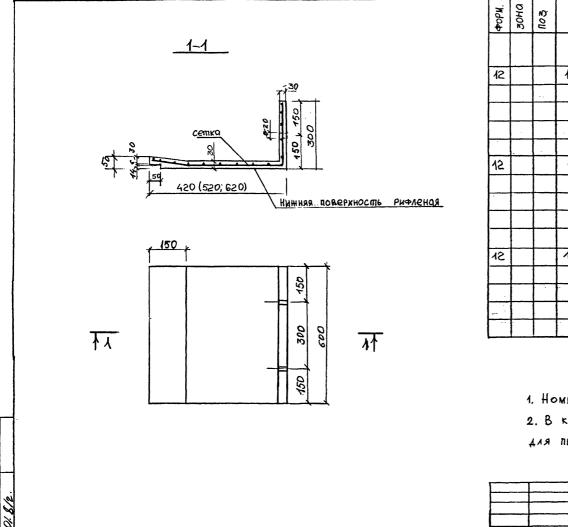
80

30

1.8

19

1.9

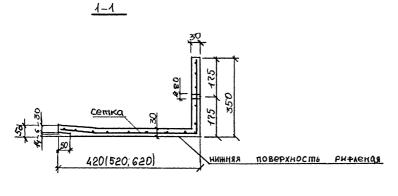

2.0

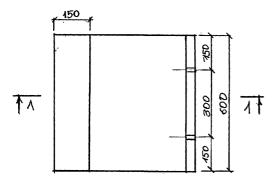
2.4

2.2

	l. Cemkn	ROMORABOMOTEN	ПРИ	ионоти коншакш-
HOV	йониэиот і	9¥6KWb0 C₽∂bkn	В	соответствии
C.	им к инрводочт	70CT 14098-68	u Ch	1 393-69.

				114	49 -KP-1	.4.009		
Lr cuer		250		Cei c-1-2 c-1-2	TIKU C-1-4 C-1-5			Масшп
	Антонова Антонска	Hun ol	,	6-1-3		VNCM		тов
		Comen	-					нститу
HCHON.	Степина	Comen-				1 A	CHMN	VIIboek




						15
₩doф.	эона	103	Обозначение	Наимбнованив	Кол	Прим
				Сворочные единицы		
12			1.149-KP-1 1.012	Cemka C-2-1	1	
			ПУ- 6. 4. 3.	материалы		
				Бетон марки м200 м3	0.013	
				Macca N3JEVNS KL	32	
12			1.149-KP-1.1.012	Cemka C-2-2	1	
			is a second of			
,			NY-6.5.3	Материалы		
				Бетон марки м20043	0.015	
				Масса изцелия кл	37	*
12			1.149 - KP -1.1.042	Cemka C-2-3	1	
			ПУ-6.6.3	Материалы		
_				Бетон марки мгоом	C017	
				масса изделия кл	42	

- 1. Номенклапуру плит см. черт. 1.149-КР-1.1.006.
- 2. B KAHLON NAUME RPELYCMOMPEHLI OMBEPCHUR

 AND RPONYCKA COELUHUMEALHUX CMEPHHEN Ø 10 AT.

				1.149-KP-11	.010		
P. acc. Ru		V		АРМИРОВАНИЕ ПЛИПП ПУ-64.3, ПУ-6,5.3.ПУ-663		Maccq	_ - Мості ш
Rychen BH Bea Him Ahm REDECE AHM Pazpur Come	OHOR	Green	7	111-6/1/0 / 113-6/0/0/111-6/0/	UB06KI VNC411	пный і	CTO DE AH CTI HITI YM TPO DE KTI

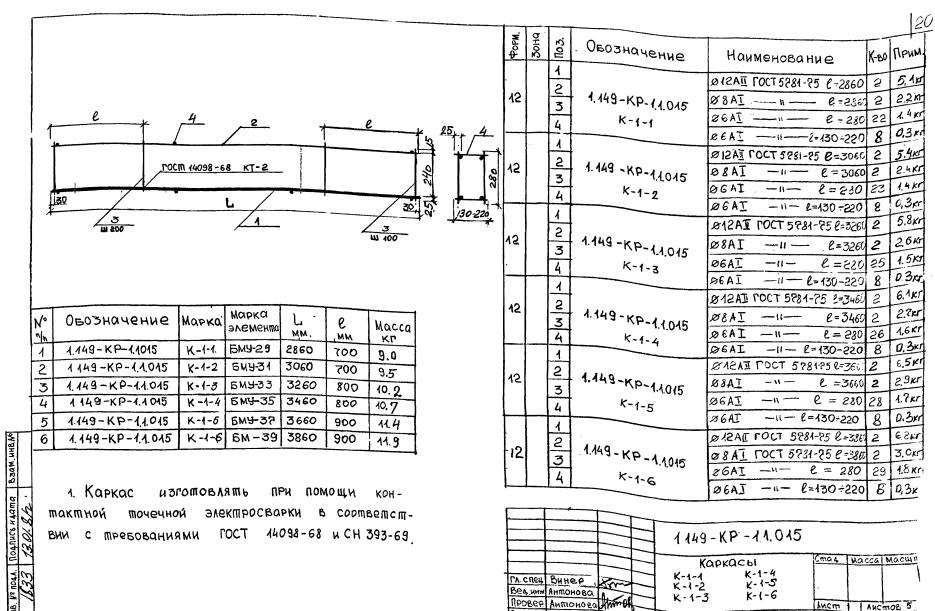
ROSPINCS USQ TO BECOM, NHB, N

							110
форм	Зона	noz.	ОБОЗНОЧЕНИЕ	Наименование	KON.	ПРИ	М
				Сворочные ефиницы			
12			1 149-KP-1.1 C12	Сетка с-2-4	1		1
			,				
			NY-6,4,3,5	Матерналы			
				BEMOH WOLKN W 500 M3	0.014		
				Насса изделия кг	35		
12			1.149-KP-1.1012	Сетка с-25	1		
							١
			NY-6, 5. 3,5	Патерналы			_
				Бетон марки 14200 м3	0,016		
				Масса изделия кп	40		
12			1.149 - KP-1.1012	сепка С-2-6			
			ПУ-6. 6. 3.5.	<i>Натерналы</i>			
				Бетон марки И 2004	0.017		╛
				Macca nsteins kl	43		$ \mathbb{J} $

- 1. HOMEHKAAMYPY MANT CM. 4EPT. 1.149-KP-1.1.006.
- 2. В кандой плите предусмотрены отверстия
- AND THOUTON COETHHAMENPHPIX CMEDHHEN & 10 AT.

				1.149 -KP-1.1.0	11		
rv cuen	Euner	X		Аринрование плит пу-64.35, пу-6.5.35, пу-6.6.35	Стодия	Масса	Machint
Bea. NHH	Антонова Антонова	11.000	1		Uboeki Uboeki		NHCWNWAW TWOF
	Степина				1 .		FOGKU:

Ания сгиба	340
, 21 w80	290 AAA CEMOK C-2-1, C-2-3,
2	C-2-5 12
ш 400	12
	12
FOCT 14038 68 KT 2	12
P B	12
	12


ФopM.	Зона	No3	ОБОЗНАЧЕНИЕ	Наименование К-вр	PHM.
-				Детали	
-		1	1.149-KP-1.1012	Ø4BI FOCT 6727-53 B=700 8	0.5 KT
12		2	C-2-1	Ø48I -11- C=580 8	0,5KF
		1	1149-KP - 11012	Ø4BI rOCT 6727-53* B=250 9	0. 2KF
12		2	C-2-2	04PI -11- L=580 8	0,5 kr
		1	1.449-KP- 1.1.042	Ø4BI TOCT 6727-53" B=800 9	0.7 × г
12		2	C-2-3	Ø 4BI -11- L= 580 8	0,5kr
12		1	1.149 - KP-1.1.042	Ø 4BI FOCT 6P2P-53* B-850 40	0.8 _{KF}
12		2	C-2-4	Ø4BI -11- L=580 8	0.5Kr
12		1	1149 - KP - 11.012	Ø48I FOCT 6727-53" 8=900 10	2,9кг
16		2	C-2-5	Ø48I11- L=580 8	0.5 Kr
12		1	1 149 - KP-1 1 012	@ 4BI FOCT 6727-53" B-950 14	1,0 Kr
ا		2	C-S-6 C-5-6	Ø48I -11- L 580 8	0,5 Kr

n/n ¥	Овозначение	Map- Ka	Марка элемента	B	MM	, e	!lacca
1	1.149 - KP-11.012	C-2-1	NY-6.43	300	580	'80	1.1
- 2	1149-KP-11.012	C-2-2	NY -6.435	750	580	∹30	1.2
3	1149-KP-11.012	C-2-3	NY -6.5.3	800	580	80	1.2
4	1.149- KP-1.1.012	C-2-4	NA -6.232	850	580	.30	1.3
5.	1.149 - KP - 1.1 012	C-2-5	NY - 6, 6.3.	900	540	480	1.4
6.	1.149- KP-1.1.012	C-2-6	ПЧ-6.6,3S	950	580	130	1.5

1. Сетки изготовляются при помощи контактной точечной электросварки в соответствии с превованиями ГОСТ 14098-68 и CH 393-69

		4.4	49-KP-1.	1,012		
PA CHELL BUKEP XY		C-2-1 C-2-2	ПКИ С-2-4 С-2-5 С-2-8	Cmaa	Macca	Масшт
Вед инж Антонова	107	c-2-3	C-2-6	VNCIL	Auc	мов
RPOBER CHETUHA GALL UCTOA. CHETUHA GALL						HCWNWAIL

9 CK UB	Μυρκα Μομολυπμού	Pasi	mepbl, A	71/1	Бел	10H	Мас		Солерж.	COPAUM HOIO CA	UMEAB- TEPHCHU	NN
	δαλευ	l	В	h	MODEO	oõsëm, M³		A - <u>I</u> I	M 3 SeTOND		Becker	
1	2	3	4	5	6	7	8	9	10		12	1.1/10-1/0
	5MY-29	2900	150-240	300	200	0.13-0.21	3,9	5.1	53		1,76	1.149-KP- -1.1.014
	5MY-31	3100	150-240	300	200	0.14-0.22	4.1	5.4	55	6	1.32	-1.1.014
	Б МУ-33	3300	150-240	300	200	0.15 - 0.24	4,4	5.8	52	8	1.76	-1.1.014
	BMY-35	3500	150 - 240	300	200	0.16 - 0,25	4.6	6.1	52	10	2.20	- 1,1.014
	БМУ-37	3700	150-240	300	200	0.17 - 0.27	4.9	6,5	52	8	1,76	- 1.1.014
	БМ-39 БМУ-39	3900	150-240	300	200	0.18 - 0.28	5.1	6.8 9.3	52 63	10	2.20	- 1.1.014
	БМ-41 БМУ-41	4100	150-240	300	200	0.19 - 0.30	5.5			8	1.76	-1.1.014
	5M-43 5MY-43	4300	150 - 240	300	200	0.19 - 0.31	5.8 7.6	8.8	58 84	10	2.20	- 1.1.014
	БМ - 45 БМУ-45		150-240	300	200	0.20 - 0.32	6.0	9.2	58 65	12	2.64	- 1.1.014
	5M-47 5MY-47	4700	150 - 240	300	200	0.21 - 0.34	83	14.7	84	10	2.20	- 1.1.014
	5M-49 5MY-49	4900	150 - 240	300	200	0.22-0.35	8.6	15.3	104	12	2.64	-1.1.014
	БМ-51 БМУ-51	5100	150 - 240	300	200	0.23 - 0.37	8.9	16.0	182 - 1	10	2.20	-1.1.014
*	5M-53 BMY-53	5300	150 - 240	300	200	0.24 - 0.38	11.7	21.0	105	12	2.64	-1.1.014
181	5M-55 5MY-55	5500	150 - 240	300	300	0.25-0.40	12.0	26.9	138	14	3.08	- 1.1.014
	5M-57 5MY-57	.5700	150 - 240	300	300	0,26 - 0,41		22.6		12	2.64	-1.1.014
}	5M-59 5MY-59	5900	150 - 240	300	300	0.27 - 0.42	12.9	23.4	105 157	14	3.08	-1.1.014
	5M-61 5MY-61	6100	150-240	300	300	0.28 - 0.44	19.7	29.€	138	12	2.64	-1.1.014
	5M-65 5MY-63	6300	150 - 240	300	300	0.28 - 0.45	20.2	30.9	140 210	. 14	3.08	-1,1.014
	5H-65 5MY-65	6500	150~240	350	300	0.34 - 0.55	22.0			16	3.52	-1,1.016
	5M-67 5MY-67	6700	150 - 240	350	300	0.35 - 0.56	23.2		139 163	14	3.08	-1,1.016
	5M-69 5MY-69	6900	150~240	350	300	0.36-0,58	45,8	52.7		16	3.52	- 1,1,016
	5M-71 5M9-71	7100	250-340	350	300	0.62 - 0.85	26.0	42.2	93 123	14	3.92	-1,1.016
	5M-73 5M9-73	7300	250-340	350	300	0.64-0.87	58.0	70.1	170	14	3.92	-1.1.016
	5M-75	7500	250 - 340	350	300	0.66 - 0.90	50.2 72.7	94.1	157 214	14	3.92	-11.016
<u> </u>					1		9-KF	D-1.10	013			
1. Монолитная балка изображена человна												- Museum
2. Содержание стали определено на усреднё	нный объём б	Semona.		Гл. спец. Вед. чиж	BUNCP AHMOHOBO	1 molt	H	PMCHKA	anypa		MUN NUCH	AUCHTOL
	з. Вес соединительных стержней определен из расчета							50101	•	No	оектный	UHCMUMYM
исреднённых длин 350 и 450 mm в зовис	SOIEU.		WUKOAOBO		-		•	, ,	Ленжили			

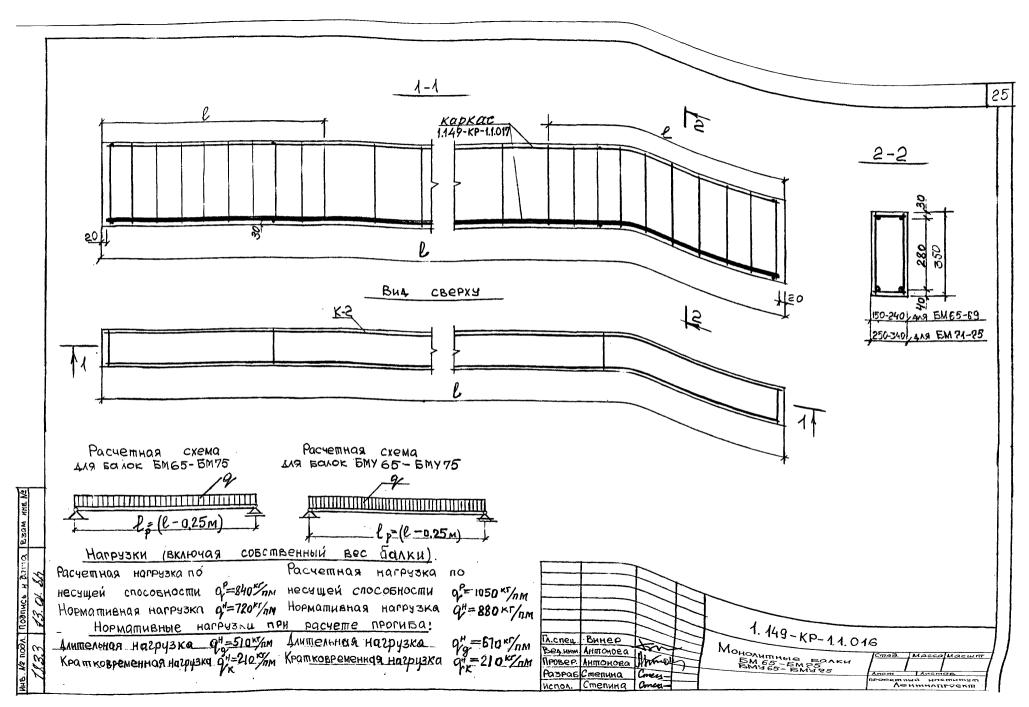
Разраб Степина Испол. Степина ста

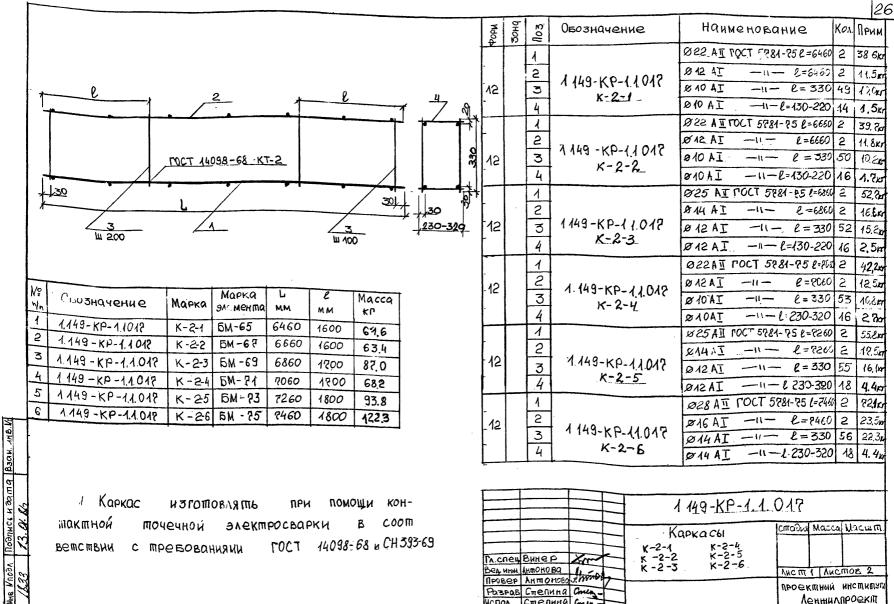
Uboekmann nachman **NEHHUARPOCK**T

.														21
Nº No	ОБ03начение		эv <i>вмвни</i> й Маька	<u>ک</u> د	e mm	Macca Kn		4 00	Зона	No3.	Обозначение	Наименование		Прим.
8	1,149-KP-1.1,015	K-1.5	5M-41	4060	1000	12.7				1		Ø16AII POCT-5881-85 E=4660	2	14.7Kr
8	1.149-KP-1.1.015	K-1-8	5M-43	4260	1000	14,6	1			2		88AI -11- E=4660	2	3. 7kr
9	1.149 -KP-1.1.015	K-1-9	6M-45	4460	1100	15.2	1	12		3	1149-KP-1.1.015	08AI -11 - L= 280	35	3.9
10	1149-KP-1,1015	K-1-10	5M-47	4660	1100	23,0	1			4	K-1-10	28AI -11- 2=130+220		0.7kr
AL	1.149-KP-1.1.015	K-1-11	6M-49	4860	1200	23,9]			1		2 46AT FOCT 5781-75 R=480		15.3m
75	1.149-KP-1.1.015	K-1-12	БМ - 51	5060	1200	24.9		12		2		@ 8 AI -11- l = 4365		3, 8x
13	1.149-KP-1.1015	K-1-13	5M-53	5260	1300	32,7.		12		3	1.149-KP-1.1015	088=3 -11- E=280	37	4.1KT
14	1.149 -KP-1.1015	K-1-14	55-MA	5460	1300	33.8				4	K-1-11	08AI -11- 8=130-22	10	0.7Kr
15	1.149 - KP-1.1.015	K -1-15	5N-57	5660	1400	35.2]			1	[BAGAIL POCT 5781-75 8=504		16,0x
16	1.149 -KP-1.1015	K-1-16	БМ-59	5860	1400	36.3		100		2		Ø8AI -11- €=5060	2	4, Okr
17	1.149-KP-1.1.015	K-4-17	5M-61	6060	1500	49.5]	12		3	1.149-KP-1.1.015 K-1-12.	08AI -11- E=280		4,20
18	1.149-KP-1.1.015	K-1-18	БМ-63	6260	1500	51.1]	_		4	Δ-1-12	88AI -:1- €=130-220	-	C. 7K
										1		018 AT FOCT 5881-75 6=5250		21.00
<u> </u>	t		-,					12		2	1110101011015	010AI -11- L=5260	1 -	6.5x
MdC+	DEO3HOTEH	ие	Haum	е нова	HHE	K-80	NPHM		١.	3	1.149-KP-1.1.015 K-1-13	08AT -11- 2 =280	-	4.4KT
0			1017 5	OOT FOO	054			<u> </u>	<u> </u>	4	A 1 13	88AI -11- E=130-220	-	0.8%
1	1		7 114510				 			1		#18 AT FOCT 5881-85 8=5462		21.84
12	2 3 1,149-KP-1,	1015	IA 8®	11 -			3.2 Kr	12		2	1 149-KP-11.015	310 AT - 11 - 8 = 5460		6,7Kr
1,0	- K-1-7	1,010	Ø6 AI	-11-			1.9 Kr			3	K-1-14	084I -11 - E=280	1	4 Exr
<u> </u>	4		Ø6AI		l=130+2		1	_	_	4	K 1 11	Ø 8AI -11 - €=130-220	1	O.Bkr
	1				81-850=		8.8KF			1	4	E 18 A T POCT 5 981-950=560		22,5kg
12	2 1149-KP	-1.1.0.15	TA 8 ®	-11-			3.4 Kr	12		5	1.149-KP-1.1.015	@ 10AI 11 P=5'60 @ 8AI 11 P=280		ZOKr
12	1 K-1-8	1,1,010	Ø 6 AI		- E=130.	280 32				3	K-1-15	2 8 AT -1 - l=130-220		4.8Kr
-	4 4 2	····	ØIAAI					-	├-	4		Ø 18A T FOCT 5881-758=5860	1	0.8Kr 23.4kr
7	$\frac{1}{2}$		Ø 8 AĪ	-11-		4460 2	9.2 Kr			1	1	\$ 10AI 11 - l=5860		1
12	2 3 1.149-KP-	1.1.015	DBAT	-11-		280 34	3,5kr 21kr	12		3	1149-KP-11015	0 8 AI -11- 6=280		9.2Kr 4.9Kr
8	4 K-1-9		ØBAI		· L= 130-				İ	12	K-1-16	8.8 AI -11-2-130-220		0.8km
1 / ₂	1171						1 - 15/1	L	<u> </u>	<u> </u>		12 10 10 10 10 10 10 10 10 10 10 10 10 10	<u> </u>	13.027
\dashv														
4833											(Aucm
×												1149-KP-11015		2
1														

	Г					**************************************			122
	-	~							
	Ф0PW.	Зена	10 J.	0503H	очение	Hann	<i>менование</i>	K-180	Прим
			1				OCT 5 781-75 L=6060		29.8Kr
	12		2	1149-X	P 11015	Ø 12 A I	-11 - e = 6060		10.8%
			3		1-17	Ø40AI	$-11 - \ell = 280$ $-11 - \ell = 130 - 220$	46	7.9%
	-		4				OCT 5721-25 l=6265		1.0kr 30.9m
	12		2	4		DASI	-11- L = 6260		11.1Kr
	1/2		3		P-1.1.015 1-18	Ø 10AI	-u- l=280	48	8, 1Kr
			4		1 10	Ø10AI	-11-l=130-220	14	1.0rr
						•			
	1								
2	┨								
CHA									
8304									
amo.									
100	9								
7UC6	3.0								
101	7								
1700	33								
UHE.Nº noga Togancs U dama B30m. UHEN	163					1149-KP	-11015		3
12				1	L				

							<u> 45</u>
Форм.	5она	No3.	Обозначение	Наименование	K-80	При	М.
		1		Ø 14A TOCT 5781-75 L= 3860	2	<i>9</i> ,3	KT
,,	'	2	1.160 80.11.015	Ø 8AI (= 3860	2	3,0	Kr
12		3	1.149-KP-1.1.015 K-1-19	ø GAI l= 280	29	1.8	Kr
		4	K 1 17	Ø 6AI l=130÷220	2 2 29 8 2 31 10 2 2 32	0,3	Kr
		1		Ø 14 AI FOCT 5781-75 L= 4060	2 .	9.8	KT
12		2	1.149 - KP - 1.1.015	Ø 8 AI 1 = 4060	2	3.2	2 KF
12		3	K-1-20	Ø 6AI " L= 280	2 29 8 2 2 31 10 2	1.5	PET
		4	X . = 5	# 6AI 1-130:220		0,4	4 K T
		1		Ø 16AT FOCT 5781-75 (= 4260	2	13.4	4KF
12		2	1,149 - KP - 1,1015	Ø 8AI "- L= 4260	2	3.4	4KT
`~		3	K-1-21	ø 8AI l = 280	32	3.5	2 KL
		4		Ø 8 AI " (= 130÷220	10	0.7	ĸ٢


n/n	OFOSHAYEHUE	Марка	Марка элемента	L MM	e mm	Macea Kr
19	1.149-KP-1.1.015	K-1-19	5M9-39	3860	900	14.4
20	1. 149-KP-1.1.015	K-1-20	Бму-41	4060	1000	15.3
21	1.149-KP-1.1.015	K-1-21	5 MY -43	4260	1000	21.0


UNG. 4º 1104 110AMES N ASTON BESCH. UNB. N. 2.

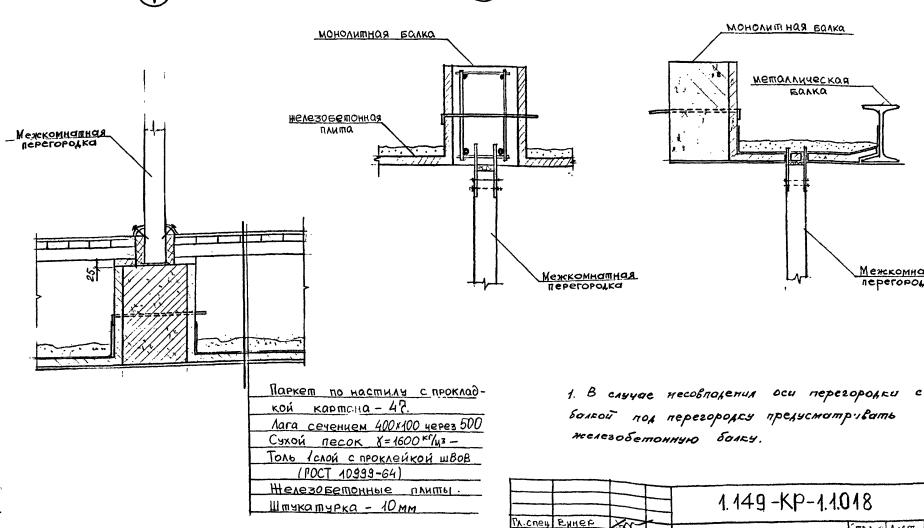
1.149 - KP - 1.1.015

Ancm

																	24
Moot	<i>Зоно</i> Поз.	<u>ОБ03начение</u>	Наименование	K-80	NHALL		WdOф	50HQ	No 3.	ОБОЗНОЧЕ	HNE	F	Гаимено	ваны	16	K-180	Прим
	1		Ø 16 AI POCT 5881-25 8=4460	2	14.1 Kr			1	1			02.	e AII POCT!	781-7	5 L=5860	2	35.0 Kr
	2		88AI -11- E=4460	2	3.5 kr				2			81	2AI -11		l =5860	2	10.4 Kr
12	3	1.149-KP-1.1015	28AT -11- e=280	34	3.8 KF	1	12	Γ	3	1149-K		æ10	n— IA		l =280	44	7.6Kr
	4	K-1-22	Ø8AI —11 — €=130-220	10	0.7 KF		- 1	Γ	4	K-1	K-1-29		AI —	- 2=1	130-550	12	1.3KF
	ĸ		Ø18 ATT FOCT 5281-25 R=4660	2	18.6 Kr	Γ			1			82	2 AT POCT	5881-	P5 &6060	<i>a</i>	36,2KT
	2		Ø10AI -11 - € =4660	2	5,8 KF		- 1	- 1	2			81	2AT -11		2=6060	2	10.80
12	3	1.149-KP-1.1015	Ø8AI -11- L= 230	35	3.9 _K r	1	12		3	1149-KK		210	OAI -	·	e=230	46	7.9 KF
	4	K-1-23	Ø 8AI -11- 8=130-220	10	0.7kr				4	K-1	1-30	81	OAT	· l	130-220	14	1.5Kr
	1		@18 AI POCT 5281-P5 C=4860	2	19.4 Kr	Г			1			02	FAT POCT	5781	-75 l=6260	2	4.81Kr
1	15		Ø10AI -11- L=4860	2	6.0 KF		12		2	1149-K	P-11045	81	AAI -II-		L=6260	5	15.1kr
12	3	1.149-KP-11015	38AI -11- E=280	3.7	4.1kr			Γ	3	1	4-31	81	1- IAS		l =280	48	11.7 _K r
	4	K-1-24	₩8AI -11- 8=130-220	10	0.7kr	L	\perp	\bot	4	``		Ø1	SAI -	11 1	= 130-220	14	1.6 Kr
	1		Ø18 AT FOCT 5981-75 6=5060	2	20.2kr												1
1	2	4410 40 410.0	Ø 10AI l=5060	2	6.2Kr												
12	3	1.149-KP-1.1.015	88AI -11- E=280	38	4.2 Kr	•											l
	4	K-1-25	Ø 8 AI -11- €=130-220	10	0.7kr			Vº	T	n		lagua	Mapka	L	e	M	lacca
	1		Ø20A∏ ("OCT 5781-75 l=5260	2	25.9 _K r			n/n	1	DEOSHQUE	HUE IN	narka	эчеменша Марка	мм	MM	. '	ΚΓ
1,,	2		Ø12AI -11- 8=5260	2	9.3 KF			22	. 1	1.149-KP-1	1.015	K-1-22	BMY-45	4460	1100	2	2.1
12	3	1.149-KP-1.1015	085= 9 -11- [AON B	40	6.9KF			23		149-KP-1			5H7-48	4660	1100	2	9,0
İ	4	K-1-26	010AI —11- €=130+220	12	1.3 Kr			24	1	1 149-KP-1	1.015	K-1-24	€NY-49	4860	1200	3	0 2
	1		020 AT FOCT 5781-75 E=540	2	26.9KF			25	1	1149 - KP-	1.4,015	K-1-25	5MY-51	5060	1200	3	51.3
٦,	2	1110 no 111	012 AI -11- €=5460	2	9.7 KF			26	-	149 - KP-1		K-1-26	BMY-53	5260	1300) 4	3,4
12	3	1.149-KP-1.1.015	@10AI -11- E=280	41	7.1kr			27	Τ.	1149 -KP.	1.1015	K-1-27	BMY-55	5460	130	0 4	50
	4	K-1-27	810AI -11-l=130-220	12	1.3 Kr			28	1	1149-KP-	1.4 015	K-1-28	53-EM3	5660	1400	4	16,6
$-\Gamma$	1		@20 AI	2	27.9KF			29	17	1149-KP-	1.1 015	K-1-29	Бму-59	5860	1400	5	54.3
12	2	1149-KP-11015	Ø12AI —11 — €=5660	2	10.0 Kr			30	1	1149 - KP -	11.015	K-1-30	PHA-61	60 6C	1500	5	6,4
	3	K-1-28	@ 10AI -11- E = 280	43	7.4 Kr			31	1	149 - KP-1	.4.045	K-1-31	E9-FKA	6260	1500) 7	26.4
<u>i</u>	4	K 1 20	@10AI -11-1=130-220	12	1,3 Kr						,						
V.				,		•											
-																	
53										Г							Лист
1633											1	149-1	KP-1.1.0	<u>15.</u>			<u>Лист</u> 5

CTENHA Gum

HCHON

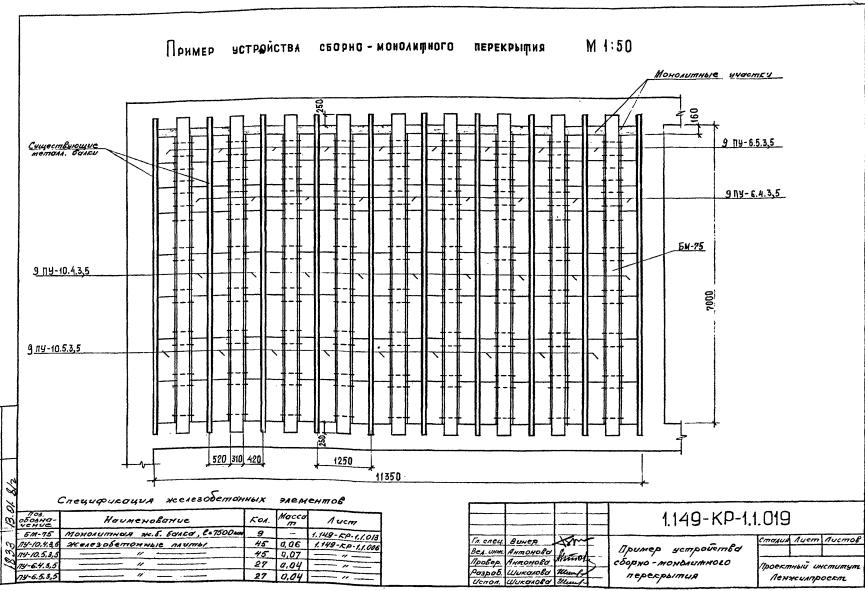

фори	Зона	1103.	Обозначение	Наименование	Kon.	Прим.
٣		1		022 ATT FOCT 5781-752=6460	2	38,6km
		2	1110 00 11010	\$12 AI -11 - C=6460	2	11,5 Kr
12		3		@10AI -11- E=330	49	10.0p
		4	, ~ /	Ø10AI -11-l=130-220	14	1,5 _{th}
		1		Ø25 A I TOCT 5781-75 €= 6660	2	51.1kr
		2		014 AI -11- C=6660	2	16,1kr
12		3		812AI11- €=330	50	14,64
		4	K-2-8	8 12 AI _ 11 - l=130-220	16	2,5 Kr
		1		028 A □ FOCT 5781-85 8=686	S	66.3 _K
		2		Ø 16 AI 11 L=6860	S	21.6Kr
12		3		814AI -11 - L=330	<i>5</i> 2	20.72
		4	K-2-9	014AI -11-l=130-220	16	3.5kr
		1		Ø25 ATT FOCT 5781-25 €= 2060	5	54.2kr
		2	1 1/0 1/0 / 1010	@14AI -11- L= 7060	2	17.0kr
12		3		Ø12AI —11— l=330	53	15.5kr
		4	X-2 10	Ø 12AI -11 - €=230 320	۱6	3.9 Kr
		1		028 A TT COCT 5881-75 C= 7260	2	80.1m
1,0		2		216 AI -11 - 2=7260	2	22.90
12		3		814AI -11- l=330	55	21.94
		4	K-2-11	Ø14AI	18	6.0 Kr
		1		032 AI POCT 5881-85 R=8460	-11 — \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	94.16
	1 2 1.449-KP-1.1.017 8.22 Å T TO 8.12 Å T	018AI -11- L=7460	2	29.8K		
12		3		Ø18AI -11- l=330	56	2 11.5 km 49 10.0 km 49 10.0 km 44 1.5 km 2 51.4 km 2 16.4 km 50 14.6 km 50 21.6 km 6 2.5 km 2 21.6 km 6 3.5 km 2 14.0 km 2 14.0 km 5 3.9 km 6 3.9
		4	K-2-12	0.18AI -1- l=230-320	18	60xr
						······································
j						

No No	Обозначение	Марка	Марка Элемента	L MM	e. MM	Macco
1	1.149 - KP-11.018	K-2-7	EN4-65	6460	1600	61.6
2	1.149- KP-1,1.018	K-28	EMA-65	6660	1600	84.3
3	1 149-KP-11.017	K-2-9	BM4-69	6860	1200	112,1
4	1.149-KP-1.1018	K-210	EMY-81	7060	1200	90,6
5	1.149 -KP -1.1.018	K-2.4	EM - FM	7260	1800	120.9
6	1.149-KP-11.018	K-2-12	55- FWG	2460	1800	166,8

1.149 - KP-11.017

лист 2

REAL WHIT AHMOHOBO


ПРОВЕР АНТОНОВО ДИТА! Разраб Степина Степ

UCTOA CHENUHA COME

Узлы крепления

перегородок

4anta Bsan. Whe 1/

